Những câu hỏi liên quan
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 8 2021 lúc 15:04

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

Bình luận (0)
ミ★ήɠọς τɾίếτ★彡
7 tháng 8 2021 lúc 15:31

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673

Bình luận (0)
Rosie
Xem chi tiết
Akai Haruma
28 tháng 5 2022 lúc 11:26

Lời giải:

Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:

$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$

$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)

$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)

Vậy $P_{\min}=2022$

 

Bình luận (0)
Trần Anh Hoàng
Xem chi tiết
Akai Haruma
12 tháng 1 2023 lúc 19:23

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{8}{9y}+\frac{18}{25z}\right)(x+y+z)\geq (\sqrt{2}+\sqrt{\frac{8}{9}}+\sqrt{\frac{18}{25}})^2\)

$\Leftrightarrow A.2\geq \frac{2312}{225}$

$\Leftrightarrow A\geq \frac{1156}{225}$

Vậy $A_{\min}=\frac{1156}{225}$

Bình luận (0)
Diệp Nguyễn Thị Huyền
Xem chi tiết
Jack Viet
Xem chi tiết
dinh huong
Xem chi tiết
conan
Xem chi tiết
Nguyễn Gia Khánh
8 tháng 6 2023 lúc 18:46

\(\dfrac{1}{x}+\dfrac{2}{y}\le1\Rightarrow\dfrac{2}{y}\le1-\dfrac{1}{x}\Rightarrow y\ge\dfrac{2x}{x-1}=2+\dfrac{2}{x-1}\)

\(x+\dfrac{2}{z}\le3\Rightarrow x< 3;\dfrac{2}{z}\le3-x\Rightarrow z\ge\dfrac{2}{3-x}\Rightarrow y+z\ge2+\dfrac{2}{x-1}+\dfrac{2}{3-x}\)

Lúc này ta sẽ áp dụng bất đẳng thức Bunhiacopski

Ta có:

\(6^2\le\left(y+z\right)^2=\left(\sqrt{2}\dfrac{y}{\sqrt{2}}Z\right)^2\le3\left(\dfrac{y^2}{2}+z^2\right)=\dfrac{3}{2}\left(y^2+2z^2\right)\)

\(\Rightarrow P\ge24\). Dấu đẳng thức xảy ra khi và chỉ khi \(y=4,z=2\) 

Vậy giá trị nhỏ nhật của P là 24

Bình luận (0)
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 2 2022 lúc 18:17

Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)

\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)

\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)

Bình luận (0)
Tạ Uyên
Xem chi tiết
Xyz OLM
29 tháng 1 2022 lúc 10:46

Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)

\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)

"=" xảy ra khi y = 2 ; x = 1 ; z = 1

Bình luận (0)
Tạ Uyên
29 tháng 1 2022 lúc 10:37

Giúp mình câu này với ah.

 

Bình luận (0)
Trần Đức Huy
29 tháng 1 2022 lúc 11:00

Ta có x+y+z=4

=>y=4-x-z

Ta có :x,y,z>0

=>\(x^2>0,z^2>0\)

=>\(x^2z>0,z^2x>0\)

Áp dụng bất đẳng thức cô si với hai số dương \(x^2z\) và z ta có

      \(x^2z+z\)>=2\(\sqrt{x^2z.z}\)

<=>\(x^2z+z>=2xz\)

CMTT:\(z^2x+x>=2xz\)

=>\(x^2z+z+z^2x+x>=4xz\)

=>\(x+z>=4xz-x^2z-z^2x\)

=>\(x+z>=xz\left(4-x-z\right)\)

Mà y=4-x-z(cmt)

=>\(x+z>=xyz\)

=>\(\dfrac{x+z}{xyz}>=1\)

hay \(P>=1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x^2z=z\\z^2x=x\\x+y+z=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x^2=1\\z^2=1\\x+y+z=4\end{matrix}\right.\)  

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\1+y+1=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\y=2\end{matrix}\right.\)

Vậy tại x=1, y=2,z=1 thì P có giá trị nhỏ nhất là 1

Bình luận (0)